

UNIVERSIDAD AUTONÓMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA

DIVISIÓN DE CARRERAS AGRONÓMICAS

Fecha de elaboración: Enero del 2008 Fecha de modificación: Diciembre 2010

I. DATOS DE IDENTIFICACIÓN

PROGRAMA ANALÍTICO DE LA MATERIA: Fenómenos de Transporte I.

CLAVE: RYD-481

DEPARTAMENTO: Riego y Drenaje

HORAS TEORIA: 3 HORAS PRÁCTICA: 2

CRÉDITOS: 8

CARRERAS A LAS QUE SE IMPARTE: Ingeniero en Procesos Ambientales.

PRE-REQUISITOS: Física I, Cálculo Diferencial e Integral, Ecuaciones Diferenciales,

Métodos Numéricos.

II. OBJETIVO GENERAL

El alumno aprenderá el manejo de las leyes y teorías que rigen el comportamiento de los sistemas diseñados para la transferencia de fluidos y calor, por medio de modelos que ejemplifiquen el movimiento de energía a través de un medio continuo.

III. OBJETIVOS ESPECÍFICOS

Al terminar el curso el alumno será capaz de diseñar conductos a presión así como las formas de aforos de dichos conductos.

IV. TEMARIO

I.- PROPIEDADES DE FLUIDOS.

- 1.1.- Peso especifico.
- 1.2 Densidad especifica.
- 1.3.- Densidad relativa.
- 1.4.- Viscosidad dinámica.
- 1.5.- Viscosidad cinemática.

II.- HIDROSTATICA.

- 2.1.- Presión.
- 2.2.- Propiedades de la presión.
- 2.3.- Ecuación fundamental de la hidrostática.
- 2.4.- Manometría.

UNIVERSIDAD AUTONÓMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA

DIVISIÓN DE CARRERAS AGRONÓMICAS

- 2.4.1.- Tubos piezómetricos.
- 2.4.2.- Piezómetros.
 - 2.4.3. Piezómetro diferencial.
- 2.4.3.- Manómetros metálicos.

III.- HIDRODINAMICA.

- 3.1- Tipos de flujo o regímenes de flujo.
 - 3.1.1.- Régimen laminar.
 - 3.1.2.- Régimen turbulento.
 - 3.1.3.- Régimen Transicional.
 - 3.1.4.- Régimen transitorio.
 - 3.1.5.- Régimen no Transitorio.
 - 3.1.6.- Régimen Uniforme.
- 3.2- Ecuación de continuidad.
- 3.3- Aplicación de la energía de Euler.
 - 3.3.1.- Tubo Pitot.
 - 3.3.2.- Medidor Venturi.

IV.- ORIFICIOS.

- 4.1- Clasificación de Orificios.
 - 4.1.1.- Orificios de pared delgada.
 - 4.1.2.- Orificios de pared gruesa.
- 4.2.- Coeficientes de orificios.
 - 4.2.1.Coeficientes de contracción, de velocidad y de descarga.
 - 4.1.4.- Perdidas de energía en orificios.
- 4.3.- Aplicaciones de orificios.
 - 4.1.5.- Aplicación de tubos cortos en la industria.
 - 4.1.6.- Vaciado de depósitos con y sin aportación de fluido.

V.- PERDIDAS DE ENERGIA

- 5.1- Pérdidas de energía de forma o localizada.
 - 5.1.1.- Ecuación de Darcy-Wesbach.
 - 5.1.2.- Coeficientes de pérdida de energía de forma.
- 5.2-. Pérdidas de energía de rozamiento o de superficie.
 - 5.2.1.- Ecuación de Maning.
 - 5.2.2.- Ecuación de Hazen.
 - 5.2.3.- Ecuación de Darcy-Wesbach.
 - 5.2.4.- Factor de rozamiento.
 - 5.2.4.1.- Ecuación de Poiseville.
 - 5.2.4.2.- Ecuación de Blasius.
 - 5.2.4.3.- Ecuación de Nikuradse.
 - 5.2.4.4.- Ecuación de Koseny.

UNIVERSIDAD AUTONÓMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA

DIVISIÓN DE CARRERAS AGRONÓMICAS

- 5.2.4.5.- Ecuación de Richter.
- 5.2.4.6.- Ecuación de Prandtly Von-Karman.
- 5.2.4.7.- Ecuación de Colebrook-White.
- 5.2.4.8.- Ecuación de Swamme & Jain.
- 5.2.4.9.- Diagrama de Moody.
- 5.3.- Golpe de ariete.
 - 5.3.1.- Velocidad de onda de presión.
 - 5.3.2.- Sobrepresión por golpe de ariete.
- 5.4.- Criterios para selección de diámetros en tuberías.
 - 5.4.1.- Criterio de velocidad.
 - 5.4.2.- Criterios de pérdida de energía.
- 5.5.- Potencia de bombeo.
 - 5.6.- Carga total dinámica.
 - 5.7.- Unidades de potencia.

VI.- VERTEDORES.

- 6.1- Partes del vertedor.
- 6.2.- Clasificación de vertedores.
 - 6.2.1.- Por su geometría.
 - 6.2.2.- Por su funcionamiento.
- 6.3.- Vertedores de pared delgada.
 - 6.3.1.- Vertedor rectangular.
 - 6.3.2.- Vertedor triangular.
 - 6.3.3.- Vertedor trapecial.
 - 6.3.4.- Vertedor Cipolleti.

V.- PROCEDIMIENTO DE ENSEÑANZA APRENDIZAJE

- Presentación oral de los respectivos temas con apoyo audiovisual por parte del maestro
- 2.- Discusión dirigida de temas
- 3.- Investigación electrónica de temas específicos por parte de los alumnos
- 4.- Exposición oral de temas seleccionados por los alumnos
- 5.- Prácticas de laboratorio y campo

VI.- EVALUACIÓN

- -se realizaran tres evaluaciones escritas por periodo (valor del promedio 60%).
- se realizaran evaluaciones de las tareas y practicas (valor promedio 20%).
- -. se presentarán trabajos de investigación y exposición (valor del trabajo 20%).

UNIVERSIDAD AUTONÓMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA DIVISIÓN DE CARRERAS AGRONÓMICAS

VII.- BIBLIOGRAFÍA BÁSICA Y COMPLEMENTARIA

BÁSICA

Streeter. Mecánica de fluidos. McGraw Hill. Matix. Mecánica de fluidos. Harla. Coronel, T. Hidráulica. CECSA. AZEVEDO, N. Manual de hidráulica. Harla.

COMPLEMENTARIA

Robert, L. Mecánica de fluidos aplicada. Prentice Hill King, H. Manual de hidráulica.

VIII PROGRAMA ELABORADO POR:

M.C. BRAULIO DUARTE MORENO.

IX PROGRAMA ACTUALIZADO POR:

M.C. JOSE GUADALUPE GONZALEZ QUIRINO. M.C. CARLOS EFREN RAMIREZ CONTRERAS.

DISTRIBUCIÓN DE HORAS SEGÚN SISTEMA DE CREDITOS EN PROGRAMA ANALÍTICO Y MANUAL DE PRÁCTICA

			TOTAL DE HORAS A							
			DISTRIBUIRSE							
	HORAS	SEMANAS POR SEMEST	P.ANALIT.	M.DE PRACT.						
HORAS TEORIA	3	15	45							
HORAS PRACTICA	2	15	30	30						
TOTAL DE HORAS	5		75	30						

UNIVERSIDAD AUTONÓMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA DIVISIÓN DE CARRERAS AGRONÓMICAS

CRONOGRAMA

TEMAS	¿Cuáles semanas?	? ¿Cuántas horas?					
I PROPIEDADES DE FLUIDOS.	1,2	10					
II HIDROSTATICA.	3,4	10					
III HIDRODINAMICA.	5,6	10					
IV ORIFICIOS.	7, 8, 9	15					
V PERDIDAS DE ENERGIA.	10, 11, 12, 13	20					
VI VERTEDORES	14, 15	10					

UNIVERSIDAD AUTONÓMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA DIVISIÓN DE CARRERAS AGRONÓMICAS

CRONOGRAMA DE TEMAS			Semana													
Temas (horas).	Actividades		2	3	4	5	6	7	8	9	10	11	12	13	14	15
I PROPIEDADES DE FLUIDOS.	El alumno entenderá como determinar las propiedades de fluidos en laboratorio.															
II HIDROSTATICA.	El alumno entenderá la ecuación general de la hidrostática y aprenderá a medir presiones.															
III HIDRODINAMICA.	El alumno será capaz de comprender los tipos de flujos y aplicara la ecuación de la energía de Euler.															
IV ORIFICIOS.	El alumno aprenderá como determinar caudales con orificios															
V PERDIDAS DE ENERGIA.	El alumno aprenderá la forma en que se determina las pérdidas de energía en tuberías.															
VI VERTEDORES	El alumno aprenderá como determinar caudales con diferentes tipos de vertedores.															