

Evaluación de la actividad insecticida de Heliopsis longipes (A. Gray Blake) sobre ninfas de Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae)

Evaluation of the insecticidal activity of Heliopsis longipes (A. Gray Blake) on nymphs of Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae)

Mariana Beltrán Beache¹, Ernesto Cerna Chávez¹, Juan Carlos Delgado Ortiz¹, Yisa María Ochoa Fuentes^{1*}

Beltrán Beache, M., Cerna Chávez, E., Delgado Ortiz, J. C., Ochoa Fuentes Y. M. Evaluación de la actividad insecticida de Heliopsis Iongipes (A. Gray Blake) sobre ninfas de Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). Investigación y Ciencia de la Universidad Autónoma de Aguascalientes. Número 66: 12-15, septiembre-diciembre 2015.

RESUMEN

Bactericera cockerelli (Sulc.) es una plaga de importancia económica cuyo control principal se basa en la aplicación de insecticidas de origen químico. Con el objetivo de demostrar la acción insecticida del extracto de Heliopsis longipes sobre ninfas de B. cockerelli se elaboró y concentró un extracto etanólico a partir de raíces de esta planta, al cual se le cuantificó la cantidad de afinina presente, con base en la cual se establecieron las concentraciones evaluadas y se obtuvo una concentración letal media de 234.09 ppm y mortalidades hasta del 100% en 24 h, lo cual demuestra el potencial insecticida del extracto como medio de control de las poblaciones de esta plaga.

ABSTRACT

The potato psyllid *Bactericera cockerelli* is an economically important pest, whose management focuses on the application of chemical insecticides. The objective of this study was to demonstrate the

Palabras clave: Heliopsis longipes, afinina, actividad insecticida, Bactericera cockerelli.

Keywords: Heliopsis longipes, affinin, insecticidal activity, Bactericera cockerelli.

Recibido: 17 de septiembre de 2014, aceptado: 29 de junio de 2015

insecticidal activity of *Heliopsis longipes* extract on *B. cockerelli* nymphs. An ethanolic extract was prepared from roots and the amount of affinin present in the extract was determined, from this, several concentrations were tested, obtaining a median lethal concentration of 234.09 ppm and mortalities until the 100% in 24 h. This demonstrates the potential of the extract controlling populations of this pest.

INTRODUCCIÓN

B. cockerelli (Sulc) (Hemiptera: Triozidae), conocido también como salerillo, pulgón saltador o psilido de la papa/tomate, es una plaga de importancia económica que afecta principalmente cultivos de solanáceas en México, Estados Unidos, y Nueva Zelanda (Munyaneza, 2010). El origen de los daños generados es de dos tipos: daño directo de tipo toxinífero y daño indirecto por la transmisión de procariontes (Ramírez Dávila et al., 2012), como Candidatus liberibacter solanacearum, bacteria Gram negativa limitada al floema y patógeno de importancia económica en cultivos de solanáceas en México, Honduras, Guatemala, Belice, Estados Unidos de América, Nueva Zelanda, Europa, Noruega y Suecia (Munyaneza, 2013b; Gross et al., 2014), capaz de provocar pérdidas totales en los cultivos donde se presenta (Munyaneza et al., 2012a, b).

Se han desarrollado varias estrategias para el control de B. cockerelli, pero hasta el momento la más

Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro.

^{*} Autor para correspondencia: yisa8a@yahoo.com

efectiva para su manejo y el de los patógenos que transmite es el control químico (Munyaneza, 2013a). El uso de pesticidas convencionales y biorracionales de origen vegetal y mineral han demostrado una importante capacidad para disuadir o repeler la alimentación y ovoposición del psilido (Yang et al., 2010) y podrían ser herramientas útiles en programas de manejo integrado de plagas para el control de B. cockerelli (Munyaneza, 2013a).

H. longipes o chilcuague es una planta silvestre que produce en gran cantidad afinina (N-isobutil-2, 6, 8-dectrienoamida), un metabolito secundario del grupo de las alcamidas, al cual se le atribuyen los efectos biológicos que se le adjudican a la planta, entre los que destacan la acción anestésica y el estímulo organoléptico, así como actividad insecticida, bactericida y fungicida (Molina Torres et al., 1996; Ramírez Chávez et al., 2000; Gonzáles Morales et al., 2011;) además de funcionar como un estimulador del crecimiento y la regeneración de tejidos vegetales (Ramírez Chávez et al., 2004; Hernández Cruz, 2009). La afinina es un compuesto muy similar al piretro que se extrae de las flores de crisantemo Chrysanthemum cinerariaefolium (Casida, 1980) y muestra el mismo grado de acción paralizante y de toxicidad contra insectos como la mosca doméstica (Musca domestica), el lepidóptero Diaphania hyalinta y contra el díptero Aedes aegipty (vector del dengue) y el mosquito vector del paludismo (Anopheles albimanus) (Hernández Morales et al., 2012).

El objetivo del presente trabajo fue evaluar la acción insecticida del extracto etanólico de raíces de *H. longipes* sobre ninfas de *B. cockerelli* para determinar su potencial como insecticida natural en el manejo de esta plaga.

MATERIALES Y MÉTODOS

El experimento se llevó a cabo en el Departamento de Parasitología Agrícola de la Universidad Autónoma Agraria Antonio Narro en Saltillo, Coahuila.

Extracto de H. longipes

Se obtuvo un macerado a partir de raíces secas y pulverizadas de *H. longipes*, con etanol al 98% como solvente en una proporción de 1:10; 1.0g de raíz macerada por cada 10mL de solvente, reposado durante 30 días a temperatura ambiente. El extracto crudo se filtró a través de un papel Whatman No.

1 y se concentró en Rotavapor IKA-RV 10 a 78°C durante dos horas a 150 r.p.m. La determinación de la concentración de afinina se realizó en el Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), unidad Irapuato, mediante cromatografía de líquidos de alta resolución (HPLC), en una columna C18, utilizando como fase móvil acetonitrilo y agua en un gradiente de 40% a 70%, con un tiempo de corrida de 40 min a un flujo de 1mL min-1. Se obtuvo una concentración de 70.8mg ml-1 de afinina del extracto concentrado de *H. Longipes*. Las dosis empleadas para la realización de los bioensayos se basaron en la cantidad de afinina presente en el extracto.

Material biológico

Se estableció una colonia de *B. cockerelli*, con adultos recolectados en una zona papera en la localidad de Jame, municipio de Arteaga, Coahuila; la cual se mantuvo a 23 °C con un fotoperiodo de 14:10h luz/obscuridad, utilizando como hospedero plantas de papa, las cuales fueron cambiadas con regularidad debido al daño causado por la alimentación del insecto.

Bioensayo

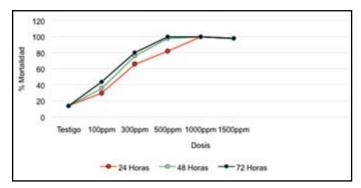
El bioensayo se realizó con ninfas del cuarto instar de B. cockerelli colocando 10 ninfas por unidad experimental con cinco repeticiones. El método empleado fue el número 002 del IRAC (2009) para ninfas de psílidos. Como primer paso se estableció una ventana biológica mediante cinco concentraciones que fueron de 100, 500, 1000, 1500, 3000 y 5000 p.p.m. de afinina, más un testigo absoluto con agua y uno negativo con etanol. Se colocaron las ninfas en la superficie de hojas de tomate tipo saladette (variedad Rio Grande) y estas sumergidas durante 5s en cada una de las concentraciones propuestas; se dejaron secar al aire y se colocaron dentro de una caja Petri con un trozo de papel de estraza húmedo para mantener la turgencia de la hoja. Se almacenaron a 23 °C con un fotoperiodo de 14:10h luz/obscuridad. Para determinar la mortalidad, las ninfas fueron observadas cada 24h durante tres días con ayuda de un microscopio estereoscópico, con la falta de respuesta ante un estímulo físico como criterio de muerte.

De acuerdo a los resultados de la ventana biológica se desarrolló un segundo bioensayo de la misma forma pero utilizando ocho dosis seriadas de

14

100, 300, 500, 1000, 1500, 2000, 2500 y 3000 p.p.m. más el testigo absoluto con agua y otro negativo con etanol. Se registró la lectura de mortalidad cada 24 h de iniciado el experimento. La concentración letal media (CL50) fue calculada con el paquete estadístico SAS 9.0 con el programa Probit, con corrección de mortalidad mediante la fórmula de Abbott (1925).

RESULTADOS


Para determinar la actividad insecticida se evaluaron cinco concentraciones de afinina del extracto etanólico (correspondientes al segundo bioensayo), en las que se observaron mortalidades del 100% a las 24 h en las concentraciones de 1000 y 3000 p.p.m.; mientras que los tratamientos de 100, 300 y 500 p.p.m. presentaron las mortalidades más bajas con 30%, 66% y 82% de mortalidad, respectivamente. Los tratamientos de 1500, 2000 y 2500 p.p.m. presentaron mortalidades arriba de 95%.

A las 48 h la tendencia fue similar, pero con un aumento en la mortalidad en las dosis de 100, 300 y 500 p.p.m. a 36%, 76% y 98%. Para las 72 horas el tratamiento de 500 p.p.m. alcanzó 100% de mortalidad, mientras que los tratamientos de 100 y 200 p.p.m. mostraron 62% y 80%, respectivamente.

La CL50 obtenida del bioensayo a las 24 h arrojó un valor de 234.09 p.p.m. de afinina presente en el extracto etanólico, con una ecuación de predicción de 0.1695x + 17.864 y un coeficiente de correlación (R2) de 0.979.

DISCUSIÓN

La elevada concentración de afinina (70.8mg mL-1) obtenida en el extracto etanólico de raíz de *H. longipes* coincide con lo reportado por Ramírez Chávez et al. (2000), quienes indican que la afinina

Figura 1. Comportamiento de la mortalidad de las ninfas de *B. cockerelli* de acuerdo al tiempo y a las diferentes concentraciones de afinina aplicadas.

es el compuesto mayoritario en la raíz de *H. longipes* y la señalan como responsable de las diversas propiedades terapéuticas en humanos y biocidas sobre bacterias, hongos, insectos y moluscos; es posible la participación de otros compuestos bioactivos presentes en el extracto.

El análisis de los resultados del experimento arrojó una concentración letal media (CL50) de 218.49 p.p.m. Al respecto Hernández Morales et al. (2012) reportan una CL50 de 2.85 p.p.m. de afinina como la cantidad necesaria para eliminar 50% de larvas de A. albimanus, lo cual comprueba la efectividad del extracto para controlar insectos. Asimismo, Juárez Flores et al. (2001) quienes utilizaron polvo de raíz de H. longipes sobre el gorgojo del maíz (Sitophilus zeamaiz), reportaron mortalidades de 100% a los 15 d.

Jacobson et al. (1947) y Domínguez et al. (1958) comprobaron la actividad biocida de la afinina en mosca doméstica y gorgojo de frijol, respectivamente. Por su parte, Del Castillo (1983) reporta la capacidad insecticida del extracto crudo de raíz de H. longipes en larvas de Oestrus ovis. Cabe mencionar que no se han reportado trabajos sobre

Tabla 1. Concentraciones letales y límites fiduciales en ninfas de B. cockerelli

	Dosis p.p.m.	Límites fiduciales	
CL ₅₀	234.09	197.71	271.73
CL ₉₅	1,267	1,029	1648
Ecuación de predicción		Y= 0.1695x + 17.864	
Coeficiente de correlación		R ² =0.979	

el efecto del extracto o de la afinina provenientes de H. longipes, sobre B. cockerelli o sobre insectos de la misma familia.

CONCLUSIONES

Se demostró la actividad insecticida del extracto etanólico de H. Longipes en ninfas de cuarto instar de B. cockerelli, se obtuvo una concentración letal

media de 218.49 p.p.m. y mortalidades de 100% a las 24 h a partir de concentraciones de 3000 p.p.m. Estos resultados muestran un panorama del potencial del extracto etanólico de H. Longipes como insecticida en el control de B. cockerelli en cultivos orgánicos, así como resultados preliminares sobre las concentraciones efectivas y la viabilidad de la purificación y evaluación de la afinina en la formulación de insecticidas.

LITERATURA CITADA

- CASIDA, J. E. Pyrethrum flowers and pyrethroid insecticides. Environmental Health Perspectives, 34: 189-202, 1980.
- DEL CASTILLO R., A. R. Efecto insecticida in vitro de la raíz de chilcúan (Heliopsis logipes) sobre las larvas de la mosca Oestrus ovis. Tesis profesional. Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia. México, 27 pp., 1983.
- DOMÍNGUEZ, J. A. et al. Síntesis de N-isopropil y N-isobutilamida de algunos ácidos y comparación de su acción insecticida con la afinina. Ciencia, 17: 213-216, 1958.
- GONZÁLEZ MORALES, S. et al. Actividad inhibitoria del extracto de Heliopsis longipes sobre Fusarium oxysporum f. sp. lycopersici. Revista Mexicana de Fitopatología, 29(2): 146-153, 2011.
- GROSS, D. C. et al. (Eds.). Genomics of Plant-associated Bacteria. (p. 205). Springer-Verlag Berlin Heidelberg, 2014.
- HERNÁNDEZ CRUZ, M. Evaluación del efecto de la afinina presente en extractos de Heliopsis longipes en la recuperación de ápices de vainilla sometidos a tratamientos con crioprotectores. Tesis de maestría. Universidad Veracruzana. Unidad de Ciencias Químicas. México, 2009.
- HERNANDEZ MORALES, A. et al. Determinación de la actividad insecticida de Heliopsis longipes A. Gray Blake, una planta endémica del estado de Guanajuato. Ra Ximhai, 8(3): 111-118, 2012.
- JACOBSON, M. et al. Correction of the source of affinin (N-isobutil-2, 6, 8-decatrienoamide). The Journal of Organic Chemistry, 12: 731-732, 1947.
- JUÁREZ FLORES, B. I. et al. Actividad del chilcuague Heliopsis longipes (Asteraceae) sobre el gorgojo del maíz Sitophilus zeamais (Coleoptera: Curculionidae). Memorias del II Simposio Internacional y VII Nacional sobre sustancias vegetales y minerales en el combate de plagas. Querétaro, México, 43-48, 2001.
- MOLINA TORRES, J. et al. Purely olefinic alkamides in Heliopsis longipes and Acmella (Spilanthes) oppositifolia. Biochemical Systematic Ecology, 24(1): 43-47, 1996.

- MUNYANEZA, J. E. Bactericera cockerelli. EPPO Bulletin, 43(2): 202-208, 2013a.
- MUNYANEZA, J. E. Candidatus liberibacter solanacearum. EPPO Bulletin, 43(2): 197-201, 2013b.
- MUNYANEZA, J. E. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist, 35: 417-477, 2010.
- MUNYANEZA, J. E. et al. First report of Candidatus liberibacter solanacearum associated with psyllid-affected carrots in Norway. Plant Disease, 96(3): 454, 2012a.
- MUNYANEZA J. E. et al. First report of Candidatus liberibacter solanacearum associated with psyllid-affected carrots in Sweden. Plant Disease, 96(3): 453, 2012b.
- RAMÍREZ CHÁVEZ, E. et al. Actividad fungicida de la afinina y del extracto crudo de raíces de Heliopsis longipes en dos especies de Sclerotium. Agrociencia, 34(2): 207-215, 2000.
- RAMÍREZ CHÁVEZ, E. et al. Alkamides Isolated from Plants Promote Growth and Alter Root Development in Arabidopsis. Plant Physiology, 134(3): 1058-1068, 2004.
- RAMÍREZ DÁVILA, J. F. et al. Spatial Behavior Comparison of Bactericera cockerelli Sulc. (Hemiptera: Triozidae) in Mexico. Neotropical Entomology, 41(1): 9-16, 2012.
- YANG, X. B. et al. Repellency of selected biorational insecticides to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). Crop Protection, 29(11): 1324-1329, 2010.

De páginas electrónicas

- ABBOTT, W. S. A method of computing the effectiveness of an insecticide. *Journal of Economic Entomology*, 18, 265-267, 1925. doi: http://dx.doi.org/10.1093/jee/18.2.265a.
- INSECTICIDE RESISTANCE ACTION COMITEE (IRAC). Method. 002. Susceptibility Test Methods Series. Version: 3, 2009. Recuperado de http://www.irac-online.org/content/uploads/Method_002_v3_june09.pdf